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bstract

X-ray powder diffraction (XRPD) analysis of intact multi-component consolidated mixtures has significant potential owing to the ability to non-
estructively quantify and discriminate between solid phases in composite bodies with minimal sample preparation. There are, however, limitations
o the quantitative power using traditional univariate methods on diffraction data containing features from all components in the system. The ability
o separate multi-component diffraction data into patterns representing single constituents allows both composition as well as physical phenomena
ssociated with the individual components of complex systems to be probed. Intact, four-component compacts, consisting of two crystalline
nd two amorphous constituents were analyzed using XRPD configured in both traditional Bragg–Brentano reflectance geometry and parallel-
eam transmission geometry. Two empirical, model-based methods consisting of a multiple step net analyte signal (NAS) orthogonalization are

resented as ways to separate multi-component XRPD patterns into single constituent patterns. Multivariate figures of merit (FOM) were calculated
or each of the isolated constituents to compare method-specific parameters such as sensitivity, selectivity, and signal-to-noise, enabling quantitative
omparisons between the two modes of XRPD analysis.

2008 Elsevier B.V. All rights reserved.
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. Introduction

X-ray powder diffraction (XRPD) is a non-destructive ana-
ytical tool having numerous applications in pharmaceutical

aterials science [1–5]. Recent advances in XRPD techniques
ave enabled quantitative analyses of APIs in their final prod-
ct form. Additionally, whole-compact in situ analysis has
een demonstrated as a viable technique used to character-
ze solid-state structural phenomena and physical interactions
f consolidated powders without further sample preparation

1,5]. Instrument and sample-specific signal aberrations such
s diffraction feature attenuation resulting from the effects of
onsolidation, or resolving overlapping diffraction peaks due

∗ Corresponding author. Tel.: +1 412 396 1543; fax: +1 412 396 4660.
E-mail address: wildfongp@duq.edu (P.L.D. Wildfong).
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o geometrically associated low angular resolution complicate
his method of analysis. Despite these obstacles, the analytical
pplications of XRPD on intact compacts have been success-
ully used for phase quantification [1,2], active pharmaceutical
ngredient (API) identification in multi-component tablets [3],
nd the assessment of consolidation effects on various crystal
abits [4]. Traditionally, instrument and sample related issues
onfounding quantitative and qualitative capabilities of XRPD
nalyses were handled via rigorous mathematical corrections
ased upon first principles of idealized diffraction theory [6]. As
n alternative, chemometrics provides a multivariate approach
or troubleshooting many quantitative difficulties associated
ith linear methods.

Chemometrics is defined by the International Chemomet-

ics Society (ICS) as “. . . the science of relating measurements
ade on a chemical system or process to the state of the

ystem via application of mathematical or statistical methods.

mailto:wildfongp@duq.edu
dx.doi.org/10.1016/j.jpba.2007.12.042
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Table 1
Concentration design matrix

Tablet # Theophylline
(w/w)

Lactose
(w/w)

MCC
(w/w)

Starch
(w/w)

1 0.600 0.200 0.200 0.000
2 0.400 0.400 0.200 0.000
3 0.200 0.600 0.200 0.000
4 0.400 0.200 0.400 0.000
5 0.200 0.400 0.400 0.000
6 0.200 0.200 0.600 0.000
7 0.600 0.200 0.000 0.200
8 0.400 0.400 0.000 0.200
9 0.200 0.600 0.000 0.200

10 0.600 0.000 0.200 0.200
11 0.400 0.200 0.200 0.200
12 0.200 0.400 0.200 0.200
13 0.000 0.600 0.200 0.200
14 0.400 0.000 0.401 0.200
15 0.200 0.200 0.400 0.200
16 0.000 0.400 0.400 0.200
17 0.200 0.000 0.600 0.200
18 0.000 0.200 0.600 0.200
19 0.400 0.200 0.000 0.400
20 0.200 0.400 0.000 0.400
21 0.400 0.000 0.200 0.400
22 0.200 0.200 0.200 0.399
23 0.000 0.400 0.200 0.400
24 0.200 0.000 0.400 0.400
25 0.000 0.200 0.400 0.400
26 0.200 0.200 0.000 0.600
27 0.200 0.000 0.200 0.600
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In quantitative chemometrics, a multivariate relationship is
ought between input data (e.g., diffraction patterns) and output
ata (e.g., composition, various physical phenomena). There-
ore, quantitative chemometric tools are typically related to
inear regression and function estimation. Some good reviews
f chemometrics methods can be found elsewhere in literature
7–11].

Multivariate methods such as whole-pattern refinement have
een in practice for many years [12]. Recently, some exam-
les employing chemometric treatments of XRPD data have
ppeared in the literature. Applications of various preprocess-
ng methods such as Fourier transforms, orthogonal signal
orrection, and wavelet transforms in improving regression
odel performance in quantitative XRPD have been demon-

trated [13]. Principal component analysis (PCA) of XRPD
ata has been shown to be an effective tool for the screening
f solid-state information such as degree of disorder, mod-
ling of dehydration, and detection of anomalous data sets
14–17]. Many of the traditional univariate methods are now
eing displaced by more efficient and accurate multivariate tech-
iques.

Phadnis et al. used a pattern subtraction technique in sep-
rating multi-component diffraction data for identification of
ctive pharmaceutical ingredients in dosage forms [3]. One dif-
culty associated with this method is that specific knowledge
f the crystalline component weight fraction is required. More
mportantly, pattern subtraction ignores the covariance structure
f angular variables in diffraction patterns. The implication of
he latter manifests in intensity reduction of angular variables
orrelated to both the subtracted component and the compo-
ent of interest. Therefore, the separation may result in a loss of
nformation correlated to the isolated component of interest, or
leakage” of spurious/incorrect diffraction features across pure
omponent patterns.

Limitations exist concerning the types of analyses that can
e performed on diffraction patterns containing features from
ll components in the system. It is imperative that the loss of
nformation is minimized through all mathematical operations
erformed on the diffraction data. As more accurate methods
or properly isolating features of diffraction patterns due to
ingle constituents are developed, the amount of information
etained for experimental analyses will also increase. This ulti-
ately enables better quantitative modeling of solid-state related

hysical phenomena (i.e., the effects of consolidation on the
tructure of individual components). In the present work, two
ethods of isolating the diffraction features attributable to a

ingle constituent are proposed. XRPD patterns of compacts
ere successfully separated into individual constituent patterns

acking the characteristic negative intensities associated with the
nefficiencies of methods such as simple pattern subtraction. A
omplex quaternary model formulation was used for the study to
rovide a realistic chemometric challenge to the proposed meth-
ds. Materials were compressed into compacts consisting of two

rystalline and two amorphous materials having overlapping
iffraction signals. Further, multivariate figures of merit (FOM)
ere calculated for both traditional Bragg–Brentano reflectance
eometry and transmission geometry allowing quantifiable dif-

f

M

8 0.000 0.200 0.200 0.600
9 0.250 0.250 0.250 0.250

erences in sensitivity, analytical sensitivity, selectivity and
ignal-to-noise to be examined.

. Materials and methods

Four-component mixtures comprising of anhydrous theo-
hylline (Knoll AG, Ludwigshafen, Germany), Lactose 316
ast Flo NF Monohydrate (Hansen Labs, New Berlin, WI),
icrocrystalline cellulose (Avicel PH 200, FMC BioPolymer,
echanicsburgh, PA), and soluble starch GR (EMD Chemicals,

nc., Gibbstown, NJ) were prepared and compressed. The com-
act concentration design matrix was fully balanced with values
anging 0–60% (w/w) (Table 1). Approximately 800 mg was
ompressed at 67.0, 117.3, 167.6, 217.8, and 268.1 MPa using
single station Carver Press (Carver, Inc., Wabash, Indiana)

quipped with a 13 mm flat-faced punch and a right-cylindrical
ie. Further information concerning sample preparation and
upplemental quality tests can be found in Short et al. [18].
ompacts of the individual pure components, compressed at
7.0 MPa, were also made.

.1. X-ray powder diffraction analysis of the

our-component compacts

All XRPD experiments were performed using a X’Pert Pro
PD system (PANalytical B.V., Alemlo, The Netherlands)
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quipped with a copper anode (λK� = 1.5406 Å), programmable
ivergence slit, and X’CeleratorTM RTMS detector. The opera-
ional voltage and amperage were set to 45.0 kV and 40.0 mA,
espectively. Diffraction patterns were acquired using an angu-
ar step size of 0.02◦ 2θ over a range of 2–60◦ 2θ. Analyses
ere performed using both Bragg–Brentano reflectance geom-

try (equipped with a horizontal spinning sample stage rotating
t 16 rpm) and parallel-beam transmission geometry (equipped
ith a vertical spinner sample stage with the samples fixed
etween two films of Kapton® film). For transmission exper-
ments, quasi-parallel X-rays were generated using an auxiliary
lliptical mirror.

Chemometric analyses were performed in the Matlab pro-
ramming environment (v7.1, MathWorks, Natick, MA) using
he PLS Toolbox (v3.0, Eigenvector Research, Manson, WA),
ogether with many analysis routines developed in-house at
uquesne Center for Pharmaceutical Technology (DCPT, Pitts-
urgh, PA).

.2. Data preprocessing

Prior to modeling, sample diffraction patterns were first cor-
ected for continuous axis shift using an iterative program which
ests for correlation between the sample pattern and a reference
attern as a function of incremental axis shifts. Ultimately, the
orrected shift having the highest correlation with the reference
attern was selected. Although this effectively corrects contin-
ous axis shifts, many anisotropic shifts are observed in XRPD,
pecifically those accompanying traditional Bragg–Brentano
eflectance geometry [19,20]. Corrections for anisotropic peak
berrations were not applied. Following continuous axis shift
orrection, diffraction patterns were smoothed by applying a
avitsky-Golay filter (21 point, 2nd order polynomial) [21].

.3. Classical least squares (CLS) regression

Classical least squares regression gained popularity in spec-
roscopy as a method for quantitative modeling due to its
greement with Beer’s law. The fact that XRPD intensity is a
inear function of the number of specific diffracting planes at a
iven diffraction angle (2θ), warrants the use of CLS regression
or modeling of XRPD data. CLS assumes a linear combina-
ion of pure component sensitivities, where each component
s weighted by concentration. A unique feature of CLS is that
he regression vectors serve as estimates of the pure component
iffraction patterns [22,23]. CLS regression models can be gen-
rated using XRPD data provided that the concentrations of all
eference constituents are known. The standard CLS model is
epresented by:

= KY + Ec (1)

here X is a matrix of diffraction intensities, K is a matrix of the

egression vectors, Y is a matrix of concentration values for all
onstituents, and Ec is the error matrix. Model error is assumed,
n this case, to be due to errors in diffracted intensities. The
alculation of the regression vector (estimated pure components)

a
a
t
i

d Biomedical Analysis 47 (2008) 238–247

s as follows:

= Y+ · X (2)

here superscript “+” indicates the Moore–Penrose pseudoin-
erse. The use of CLS regression in multivariate modeling is
imited when the concentrations of all constituents that diffract
re not known or when non-linearities are present.

.4. Net analyte signal (NAS)

Net analyte signal was introduced in 1986 as a method for
etermining the portion of an instrument signal attributed to a
pecific component, and is estimated to be that which is orthog-
nal to the remaining interfering factors present within the data
e.g., diffraction from other components, noise, etc.). The net
nalyte signal for the kth constituent of a multi-component
ystem, can be computed as the part of its diffraction pattern
rthogonal to the contributions of the other constituents if it is
ssumed that the linearity assumptions of the CLS model hold
24]. The part of the vector u that is orthogonal to the matrix X
s calculated by:

= (I − XX+)u (3)

here v is the orthogonal vector, I is an identity matrix, and the
uperscript “+” indicates the Moore–Penrose pseudoinverse. By
rojecting u into the null space of X, which includes the space
panned by all interference factors (other constituents, noise,
tc.), the portions of the vector u which are covariate with X
re suppressed. For applications of NAS in calculations which
equire a scalar value (e.g., signal-to-noise), the scalar form can
e achieved by calculating the Euclidean Norm:

ÂSk = ||vk|| (4)

.5. Figures of merit from net analyte signal

Multivariate FOM are used to determine various metrics
ssociated with method suitability using the calculated NAS
18,25–28]. Four FOM were calculated for comparing XRPD
odes of analysis.

.5.1. Sensitivity
Sensitivity is a measure of the extent of intensity variation due

o changes in analyte concentration. In XRPD, this response is
ltimately due to an increased number of diffracting planes at a
iven angle 2θ. For the kth component and ith sample, sensitivity
s calculated by:

ÊNi = vk

yi

(5)

here SÊNi is the vector of sensitivities for each angular vari-

ble, vk is the net analyte signal vector for the kth component,
nd yi is the measured concentration for the ith sample. Sensi-
ivity can also be expressed in scalar form with units of X-ray
ntensity (counts) per concentration unit.
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.5.2. Analytical sensitivity
Intensity unit differences between different instrumental plat-

orms prohibit direct comparison of sensitivity measurements.
nalytical sensitivity (�), expressed in units of inverse concen-

ration, affords the direct comparison of sensitivity estimates
or different analytical methodologies through normalization by
nstrumental noise. Analytical sensitivity is calculated using the
quation:

= SÊN
�x

(6)

here �x represents an estimate for the standard deviation of
nstrumental noise. For the purpose of this calculation, the stan-
ard deviation of the calculated NAS for diffraction patterns
rom (i) repeat scans with repositioning and (ii) repeat scans
ithout repositioning was used as the estimated measurement

rror. These scans were performed in both reflectance and trans-
ission geometries, as noise associated with each was expected

o be different. Analytical sensitivity is in units of inverse con-
entration. The inverse of analytical sensitivity is an effective
ay of comparing the relative resolution of methods in concen-

ration units.

.5.3. Selectivity
Selectivity explains the fractional amount of the total sig-

al retained from component signal overlap. Selectivity can be
alculated by:

ÊLk = NÂSk

||xi|| (7)

here xi is the sample diffraction pattern for the ith sample.
electivity is sample dependent in that analyte concentration
elative to other constituents will affect the outcome.

.5.4. Signal-to-noise
Multivariate signal-to-noise (S/N) is a dimensionless ratio of

he magnitude of useful signal to an estimate of noise. When
x is the estimate for the standard deviation of the measurement
rror (as calculated for �x), the (S/N) may be directly calculated
s:

S

Nk

= NÂSk

�x

(8)

.6. Separation of multi-component diffraction patterns

The mathematical separation of multi-component diffrac-
ion patterns into patterns having features solely related to

single constituent was accomplished through a multi-step
rthogonalization procedure similar to the NAS calculation. The
rst step in the separation involved establishing an interfer-
nce matrix including variance due to other components and
nstrumental noise. Diffraction patterns from samples having

ero concentration of the constituent of interest (j) and back-
round eliminated [29] pure component patterns (from either
LS regression vectors or XRPD scans) were modeled via sin-
ular value decomposition (SVD). Loadings explaining high

(
r
c
n

d Biomedical Analysis 47 (2008) 238–247 241

ariance in the interference matrix (while exhibiting low cor-
elation to the component of interest (k)) were retained for the
nterference basis set X−j. Let X represent a matrix containing
aw diffraction patterns collected for all the multi-component
amples. The first orthogonalization can then be calculated by:

k = (I − X−kX+
−k)X (9)

The second step of the single pattern isolation involved the
ure component diffraction pattern (via CLS regression vector
r XRPD scan) of the constituent of interest. A basis set is calcu-
ated by orthogonalizing the information retained from the first
tep to the pure component diffraction pattern. The result of this
rthogonalization is a matrix containing variance not attributable
o the pure component of interest. This basis set N is calculated
y:

= (I − BkB+
k )Xk (10)

here Bk is the pure component diffraction pattern for the con-
tituent of interest. Although this may seem counterintuitive at
rst, if it is assumed that everything remaining after suppressing

he features associated with the pure component of interest is a
esult of the inefficiencies and non-linearities of the first net ana-
yte orthogonalization (which is assumed to be unrelated to the
hysical nature of the constituent of interest), then this “signal”
an be eliminated. The final step in the isolation of the single
onstituent diffraction pattern is to suppress all of the residual
eatures after the first net analyte signal Xj correlated to the cal-
ulated basis set N. The final net analyte signal orthogonalization
s represented by:

fin = (I − NN+)Xj (11)

here Xfin is a matrix of the sample diffraction patterns of
he single constituent of interest. It is important to note that
moothing was applied at each step using an optimized win-
ow width (2nd order polynomial used throughout) to mitigate
he effects of uncertainty in calculations. Window width was
ptimized based upon the elimination of spurious features of
alculated interference basis sets thereby preventing those errors
rom propagating throughout the net analyte signal orthogonal-
zation. The two proposed techniques were implemented using
he same manipulation scheme; the only difference being the use
f pure component diffraction patterns either acquired directly
y XRPD or calculated pure component diffraction patterns
btained from CLS regression.

. Results

.1. Diffraction pattern separation

The application of CLS regression to XRPD data provides
method for estimating pure component diffraction patterns

f multi-component systems. There are, however, inefficiencies

Ec) associated with this technique. Fig. 1 shows the estimated
egression vectors for each of the four constituents within the
ompacts, in addition to the diffractograms of the pure compo-
ents as analyzed by transmission XRPD. The two regression
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ig. 1. PXRD pure component scans (- - -) and CLS calculated regression vec-
ors (–).

ectors for the two crystalline components appear to be highly
orrelated with their respective XRPD patterns. Furthermore,
oth anhydrous theophylline and lactose monohydrate diffract
t approximately 12◦ 2θ. Classical least squares regression was
ble to distinguish between the smaller lactose peak and the
ore intense theophylline peak, which overlap in the composite

iffraction pattern. At first glance, the two disordered compo-
ents appear to be highly correlated to their pure component
atterns. The problem is that the regression vectors exhibit neg-
tive intensities located at positions corresponding to areas in
he pattern at which the crystalline materials exhibit high inten-
ity diffraction. Therefore, a program was created to correct for
his based on a priori knowledge of the crystalline peak posi-
ions. Fig. 2 compares the corrected regression vectors with the
riginal regression vectors. It can be seen in the comparison of

he original and corrected regression vectors of the amorphous
omponents that the negative intensities originally observed in
he regression vectors have been removed. It is imperative to
he separation technique that the regression vectors are true

ig. 2. Corrected CLS regression vectors (- - -) and original CLS regression
ectors (–).
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ion using CLS regression vector (–) and pure scan (- - -). Starch final product
sing CLS regression vector (– –) and pure scan (- –). Starch pure component
iffraction pattern (–).

epresentations of the pure components; therefore, they should
rimarily contain only those diffraction characteristics related
o the specified constituents.

The first interference matrix contains diffraction patterns
rom samples containing zero concentration of the constituent
f interest and background eliminated [29] pure component pat-
erns. The reason for eliminating the background should become
pparent when considering the disordered components. The
haracteristic amorphous diffraction halos that are obtained for
ach of the disordered constituents are nearly superimposable.
herefore, when suppressing the features of one component,

he features of the other would also be suppressed. Thus, by
liminating the shared background, only non-halo features are
uppressed.

As previously mentioned, the two methods for diffraction
attern separation differ only by the use of the CLS-derived
ure components or XRPD scans of the pure components. Fig. 3
hows the results for starch (analyzed via transmission mode)
f the first net analyte suppression and the final net analyte sup-
ression compared to the XRPD diffraction pattern of starch for
oth separation techniques. Starch, possessing the overall lowest
iffraction intensity, was the most difficult to extract. After the
rst orthogonalization, the distinct shape corresponding to the
iffraction of starch can be seen in the remaining pattern. There
re, however, features not directly related to starch that dom-
nate the overall pattern. These spurious positive and negative
eatures align with significantly diffracting regions of the other
aterials. Since the magnitude of diffraction intensity is lower

elative to the other components, these spurious features are
uch greater than those observed in the other separations. This

s best illustrated in the separation of theophylline in Fig. 4. The
rst separation for theophylline, a crystalline material possess-

ng high diffraction intensity, is not dominated by large spurious
eatures, but clearly resembles the pure component scan. There

re, as in the case for starch, negative intensities attributable to
he inefficiencies of the first orthogonalization.

The final vectors, which were isolated using both methods,
re illustrated in Fig. 5. Table 2 shows the effective rank of the
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Fig. 4. Theohpylline separation via CLS regression vector method first orthog-
onalization (- -), final orthogonalization (– –), and theophylline pure scan (–).
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Table 3
Angular variable correlation to reference concentration data for transmission
mode XRPD

Variable correlation to reference concentration values

Multi-component Average Maximum Minimum

Anhydrous theophylline 0.5122 0.9866 −0.7502
Lactose Fast-Flo −0.3353 0.9874 −0.9169
Microcrystalline cellulose −0.1302 0.9228 −0.6852
Starch soluble −0.0465 0.9356 −0.8187

Separated (CLS b-Vectors)
Anhydrous theophylline 0.9661 0.9752 0.8571
Lactose Fast-Flo 0.8976 0.9631 0.4750
Microcrystalline cellulose 0.5838 0.6185 0.5485
Starch soluble 0.5361 0.5772 0.4494

Separated (pure scan)
Anhydrous theophylline 0.9540 0.9760 0.6723
Lactose Fast-Flo 0.9051 0.9628 0.6117
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ig. 5. Isolated individual constituent patterns as obtained using the pure com-
onent scan method (dashed line) and the CLS method (solid line).

ata matrices as a function of the separation steps. It is important
o note that the effective rank of the matrices never reaches one.

his would be equivalent to multiplying the pure component
atterns by the reference concentration value. By virtue of the
act that the final isolated patterns possess a rank greater than
ne, it can be stated that the matrices contain variation other

able 2
ffective rank of data sets throughout the separation process

Theophylline Lactose MCC Starch

eflectance, original 28
ransmission, original 28

LS method
Reflectance, first separation 22 22 22 22
Transmission, first separation 22 22 22 22
Reflectance, final separation 16 16 16 16
Transmission, final separation 16 16 16 16

ure scan method
Reflectance, first separation 22 22 22 22
Transmission, first separation 22 22 22 22
Reflectance, final separation 16 16 16 16
Transmission, final separation 16 16 16 16

c
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Microcrystalline cellulose 0.5494 0.5816 0.5194
Starch soluble 0.5743 0.6152 0.4937

han that which can be explained by linear scaling of the pure
omponents. Upon close examination, subtle peak position dif-
erences are observed between the two methods. Specifically,
he lactose monohydrate peaks in the patterns separated via the
ure scan method are shifted to higher scattering angles. When
sing the CLS regression vectors separation method, the respec-
ive pure component scans not only contain variation attributed
o concentration difference, but possibly variation as a con-
equence of powder consolidation. Conversely, this variation
s lacking when the pure components from XRPD scans are
mplemented.

The effectiveness of separation is demonstrated by the
nhanced correlation of the angular variables to the reference
oncentration data. Due to the lack of diffraction features below
◦ 2θ, correlation values were calculated between 6◦ and 60◦
θ. Table 3 contains the average, minimum, and maximum
orrelation values between angular variables and reference con-
entration data for the multi-component diffraction patterns and
eparated patterns as obtained by each method. It should be
pparent that since the multi-component diffraction patterns are
ainly dominated by the high intensity diffraction peaks of the

rystalline components, the variable correlation of the disor-
ered components to their respective reference concentrations is
argely negative resulting from the loss of the crystalline mate-
ials. It is important to note that the separation eliminated all
egatively correlated variables; this was observed for all con-
tituents. Further, the average correlation for all components
ncreased due to the positive correlation between each diffraction
ariable and the reference concentration.

.2. Consolidation effects

Wildfong et al. have demonstrated that consolidated sam-

les analyzed via transmission XRPD are vulnerable to signal
ttenuation due to both the solid fraction and thicknesses of the
amples, thereby requiring a mathematical correction for accu-
ate quantification [1]. In general, these effects were observed in
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ig. 6. XRPD scan of Compact 9 compressed at 67.0 MPa (dashed line) and
68.1 MPa (solid line).

he present data. Fig. 6 shows the multi-component diffraction
atterns for a samples having a fixed composition (20% (w/w)
nhydrous theophylline, 60% (w/w) lactose monohydrate, and
0% (w/w) soluble starch) compressed at 67.0 and 268.1 MPa,
hile Fig. 7 shows the diffractograms for samples having a dif-

erent fixed composition (20% (w/w) anhydrous theophylline,
0% (w/w) lactose monohydrate and 20% (w/w) microcrys-
alline cellulose) compressed at the identical forces. The (0 0 1),
0 1 1), and (1 1 1̄) reflections for lactose monohydrate (Fig. 7)
re attenuated as a function of compaction pressure, whereas
he same lactose monohydrate peaks in Fig. 6 are not. Although

icrocrystalline cellulose is disordered, its diffraction is signif-
cant in the region occupied by these three lactose monohydrate
eaks (Fig. 7). The portion of signal attributable to lactose
onohydrate was extracted from the scans in Fig. 7, and is pre-
ented in Fig. 8. The signal in the original composite pattern
s no longer observed. In contrast, the microcrystalline cellu-
ose signal was attenuated as a function of compaction pressure,

ig. 7. XRPD scan of microcrystalline cellulose (- –), Compact 3 compressed
t 67.0 MPa (- - -) and 268.1 MPa (–).
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ig. 8. Separated XRPD scans from Compact 3 of lactose 67.0 MPa (–) and
68.1 MPa (- - -), and microcrystalline cellulose 67.0 MPa (– –) and 268.1 MPa
- –).

articularly within the region of the three principally diffract-
ng planes for the lactose monohydrate (Fig. 8). Therefore, the
ignal attenuation observed for the lactose monohydrate peaks
n the multi-component diffraction pattern was a residual effect
orrelated to the microcrystalline cellulose attenuation. If sim-
le pattern subtraction had been used without considering the
ovariance structure, the false sense of signal attenuation in
actose monohydrate would have propagated through the sep-
ration.

.3. Figures of merit

Multivariate figures of merit were calculated using the sep-
rated diffraction patterns, which were obtained via net analyte
ignal theory. Table 4 compares the FOM between reflectance
eometry and transmission geometry using the CLS regression
ector separation. Overall, the FOM for transmission geometry
re superior to that of the reflectance. One value of particular
nterest occurs for the lactose monohydrate selectivity, which
as greater for the reflectance data than for the corresponding

ransmission data. This is likely due to the increased angular
esolution associated with reflectance geometry. When con-
idering how selectivity is calculated, high resolution will be
bserved for deconvolved peaks versus overlapping peaks, pro-
ided that the overall intensity is approximately equal. Relative
o the multi-component diffraction patterns, the three largest lac-
ose monohydrate peaks in the separated patterns obtained from
ransmission data are increasingly convolved, thereby decreas-
ng the resolution.

When comparing the FOM for the method of separation that
tilizes the pure scans (Table 5), an extreme reduction in ana-
ytical sensitivity and S/N is observed for the reflectance mode
nalysis, whereas the transmission mode analysis is relatively

naffected. Even though both the sample scans and the pure com-
onent scans were corrected for a continuous axis shift, there are
any errors associated with Bragg–Brentano reflectance geom-

try that causes anisotropic peak shifts/distortions [19,20]. Since
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Table 4
FOM for reflectance and transmission geometries of compacts compressed at 67.0 MPa separated via the CLS method

FOM for CLS separation method (67.0 MPa)

Theophylline Lactose MCC Starch

Reflectance
Sensitivity (counts/(w/w)) 189.06 200.35 109.29 115.38
Analytical sensitivity (w/w)−1 3.25 1.00 1.48 1.38
Selectivity 0.41 0.44 0.23 0.24
Signal-to-noise 101.86 30.55 42.96 39.54

Transmission
Sensitivity (counts/(w/w)) 829.64 365.84 471.94 541.03
Analytical sensitivity (w/w)−1 7.16 2.82 3.63 4.41
Selectivity 0.65 0.32 0.43 0.49
Signal-to-noise 226.54 83.44 107.87 132.50

Table 5
FOM for reflectance and transmission geometries of compacts compressed at 67.0 MPa separated via the pure scan method

FOM for pure scan separation method (67.0 MPa)

Theophylline Lactose MCC Starch

Reflectance
Sensitivity (counts/(w/w)) 174.60 138.56 95.76 109.43
Analytical sensitivity (w/w)−1 0.47 0.65 0.72 1.24
Selectivity 0.38 0.30 0.20 0.23
Signal-to-noise 14.97 19.25 21.18 35.34

Transmission
Sensitivity (counts/(w/w)) 740.25 375.70 475.58 517.39
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Analytical sensitivity (w/w) 17.21
Selectivity 0.58
Signal-to-noise 553.28

he multivariate techniques employed only account for variation
n the direction of intensity, it is hypothesized that this reduction
s a result of a combination of these errors. It is also known that
tress/strain from material consolidation can result in anisotropic
eak distortions. The use of the CLS regression vectors retain
ore of this information, whereas the pure scans alter the inten-

ities to conform to the positions as determined by XRPD. This

upports the use of CLS regression calculated vectors in the
eparation method.

Table 6 compares the FOM between transmission and
eflectance geometry using the CLS regression vector sepa-

t
s
c
t

able 6
OM for reflectance and transmission geometries of compacts compressed at 268.1 M

FOM for CLS separation meth

Theophylline

eflectance
Sensitivity (counts/(w/w)) 171.29
Analytical sensitivity (w/w)−1 2.94
Selectivity 0.38
Signal-to-noise 90.92

ransmission
Sensitivity (counts/(w/w)) 706.22
Analytical sensitivity (w/w)−1 6.10
Selectivity 0.57
Signal-to-noise 192.47
4.12 4.03 4.55
0.33 0.44 0.47

120.66 121.06 135.13

ation of compacts compressed at 268.1 MPa. As anticipated,
decrease in performance was observed with an increase in

ompaction pressure. Interestingly, only minor differences were
bserved in transmission mode data for lactose monohydrate as
result of increasing compaction pressure. Recall that the lack
f signal attenuation as a function of increasing solid fraction
nd compact thickness was observed for this component. Addi-

ionally, a dramatic decrease in the FOM for the starch pattern
eparated from reflectance data was observed with increasing
ompaction force relative to the other constituents. This suggests
hat because starch has the lowest overall diffraction intensity

Pa separated via the CLS method

od (268.1 MPa)

Lactose MCC Starch

261.61 174.96 22.40
1.27 2.36 0.27
0.55 0.37 0.05

36.43 68.52 8.16

420.73 290.43 416.92
3.24 2.23 3.40
0.38 0.30 0.38

94.33 71.53 97.98
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ig. 9. Pure constituent diffraction patterns (solid lines) relative to spectral sub-
raction results for lactose (– –) and MCC (–·–) versus CLS regression separation

ethod for lactose (—) and MCC (– –).

f the four components, any signal attenuation corresponds to a
evere decrease in available detectable variation.

.4. Pattern subtraction comparison

One of the greatest inaccuracies associated with pattern sub-
raction is the failure to address covariation of angular variables.
s a result, intensity reduction of angular variables correlated

o both the subtracted component and the component of interest
ccurs. To illustrate this point, pattern subtraction isolation of
actose and microcrystalline cellulose versus the CLS method
utlined in this work are illustrated in Fig. 9. The first fea-
ure of the pattern subtraction isolated components is the strong
egative intensities; specifically located at scattering angles of
iffraction peaks belonging to theophylline. The magnitude of
cattering at angular variables in this region is drastically dif-
erent for theophylline, lactose, and microcrystalline cellulose.
urthermore, pattern subtraction does not account for any errors
resent in the diffraction data. Therefore, the magnitude of the
ifference in intensities results in negative intensities at scat-
ering angles consistent with diffraction features of the other
omponents. The second aberrant feature that should be appar-
nt is that the separated lactose and microcrystalline cellulose
atterns obtained via pattern subtraction are nearly identical.
his indicates that the lack of sensitivity of this method for
omponents possessing low intensity diffraction (i.e., the two
isordered components). In contrast, the methods presented in
his work indirectly compensate for the errors through the final
rthogonalization step.

. Conclusions

The use of XRPD in the analysis of intact compacts remains

n important mainstay in the characterization of solid-state
henomena. Performing analyses using multivariate methods
ffords the ability to improve parameters such as signal-
o-noise, sensitivity, and selectivity. Accurate separation of

[

d Biomedical Analysis 47 (2008) 238–247

ulti-component diffraction patterns with respect to the covari-
nce structure enables direct observation of changes to material
tructure without compromising the intensity of correlated angu-
ar variables.

As formulation design moves towards utilization of increas-
ngly disordered materials, the importance of accurate detection
f scattering in XRPD from these constituents becomes
mperative. Furthermore, when attempting separation of multi-
omponent patterns, the errors and assumptions associated
ith given techniques must be considered. It has been shown

hat the implications of performing pattern subtraction for the
solation of amorphous materials in the presence of highly crys-
alline materials can have detrimental effects on the retained
eatures.

The proposed methods were successful in separating diffrac-
ion patterns obtained from XRPD of intact quaternary
onsolidated mixtures. Improved correlation to reference con-
entration data substantiates the effectiveness of this technique.
he ability to separate compound effects of signal attenuation
etween multiple components within the system demonstrates
he usefulness of these methods. Multivariate FOM revealed
ifferences between the modes of analysis as well as the separa-
ion methods. The work herein supports that the CLS regression
ector method retains an increased amount of structural infor-
ation due to the pure components directly being calculated

rom the samples. This does, however, deserve further investi-
ation as to the correlation of physical information retained via
his technique. Ongoing work will attempt to establish metrics to
etermine sufficient feature suppression while maximizing the
etention of material-specific information.
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